Journal of Computer Engineering and Informatics
Journal of Computer Engineering and Informatics(JCEI)

ISSN:23070072(Print)
ISSN:23070064(Online)

Frequency: Quarterly

Website: www.academicpub.org/jcei/


The SincCollocation Method for Solving the Telegraph Equation 

Full Paper(PDF, 1171KB) 


Abstract: 

This work illustrates the application of the sinccollocation method to the secondorder linear hyperbolic telegraph equation in onespace dimension. The exponential rate of convergence makes this method useful for approximating the solution of this equation. Numerical results show the efficiency of this method. 

Keywords:SincCollocation Method; Telegraph Equation 

Author: E. Hesameddini^{1}, E. Asadolahifard^{1}  1.Department of Mathematics, Faculty of Basic Sciences, Shiraz University of Technology, Shiraz, Iran 

References:  A. Saadatmandi, M. Dehghan, The use of SincCollocation method for solving multipoint boundary value problems, Commun Nonlinear Sci Numer Simulat , pp. 593601, 2011.
 J. Lund, K.L. Bowers, Sinc methods for quadrature and differential equations, PA, Philadelphia.: SIAM; 1992.
 M. Dehghan, A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer Methods Partial Differential Eq 24 ,pp. 1080–1093, 2008.
 A. Mohebbi, M. Dehghan, High order compact solution of the onespacedimensional linear hyperbolic equation, Numer Methods Partial Differential Eq 24, pp. 1222–1235, 2008.
 F. Gao, C. Chi, Unconditionally stable difference schemes for a onespacedimensional linear hyperbolic equation, Appl Math Comput 187 , pp. 1272–1276, 2007.
 A. Saadatmandi, M. Dehghan, Numerical solution of the onedimensional wave equation with an integral condition, Numer Methods Partial Differential Eq 23 , pp. 282–292, 2007.
 R. K. Mohanty, M. K. Jain, and K. George, On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients, J Comp Appl Math 72 , pp. 421–431, 1996.
 V.H. Weston, S. He, Wave splitting of the telegraph equation in R3 and its application to inverse scattering, Inverse Probl. 9, pp. 789–812, 1993.
 J. Banasiak, J.R. Mika, Singularly perturved telegraph equations with applications in the random walk theory, J. Appl. Math. Stoch. Anal. 11(1), pp. 9–28, 1998.
 R. Aloy, M. C. Casaban, L. A. CaudilloMata, and L. Jodar, Computing the variable coefficient telegraph equation using a discrete eigenfunctions method, Comput Math Appl 54, pp. 448–458, 2007.
 E. Hesameddini, H. Latifizadeh, An optimal choice of initial solutions in the homotopy perturbation method, Int. J. Nonlinear Sci. Numer. Simul. 10, pp. 1389–1398, 2009.
 E. Hesameddini, H. Latifizadeh, A new vision of the He’s homotopy perturbation Method, Int. J. Nonlinear Sci. Numer. Simul. 10, pp. 1415–1424, 2009.
 B. Raftari, A. Yildirim, Analytical solution of second order Hyperbolic Telegraph Equation by Variation Iteration and Homotopy Perturbation Methods, Results in Mathematics, pp.116, 2010.
 M. Dosti, A. Nazemi, Solving onedimensional hyperbolic equation using cubic Bspline quasiinterpolation,International Journal of Mathematical and Computer Sciences, pp.5762, 2011.
 A. Saadatmandi, M. Dehghan, Numerical Solution of Hyperbolic Telegraph Equation Using the Chebyshev Tau Method, Numerical Methods for Partial Differential Equations, pp.239252, 2009.
 R.Mokhtari, M.Mohammadi, Numerical solution of GRLW equation using Sinccollocation method, Computer Physics Communications, pp. 12661274, 2010.
 K. Parand, A. Pirkhedri, Sinccollocation method for solving astrophysics equations, New Astron, pp. 533–537, 2010.
 K. Parand, M. Dehghan, A. Pirkhedri, Sinccollocation method for solving the Blasius equation, Phys Lett A, pp. 4060–4065, 2009.
 K. Parand, Z. Delafkar, N. Pakniat, A. Pirkhedri, M. Kazemnasab Haji, Collocation method using sinc and rational Legendre functions for solving Volterra’s
 Population model. Commun Nonlinear Sci Numer Simulat, pp. 1811–1819, 2011.
 A. Saadatmandi, M. Razzaghi, M. Dehghan, Sinccollocation methods for the solution of Hallen’s integral equation, J Electromagan Waves Appl, pp. 245–256, 2005.
 A. Saadatmandi, M. Razzaghi, The numerical solution of thirdorder boundary value problems using Sinccollocation method, Commun Numer Meth Eng, pp. 681–689, 2007.
 M. Dehghan, A. Saadatmandi, The numerical solution of a nonlinear system of secondorder boundary value problems using the Sinccollocation Method, Math Comput Model, pp. 1434–1441, 2007.
 A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, HEP and Springer, Beijing and Berlin, 2009.
 F. Stenger , Numerical methods based on Sinc and analytic functions. New York: SpringerVerlag, 1993.

