Journal of Computer Engineering and Informatics          
Journal of Computer Engineering and Informatics(JCEI)
Frequency: Quarterly
The Sinc-Collocation Method for Solving the Telegraph Equation
Full Paper(PDF, 1171KB)
This work illustrates the application of the sinc-collocation method to the second-order linear hyperbolic telegraph equation in one-space dimension. The exponential rate of convergence makes this method useful for approximating the solution of this equation. Numerical results show the efficiency of this method.
Keywords:Sinc-Collocation Method; Telegraph Equation
Author: E. Hesameddini1, E. Asadolahifard1
1.Department of Mathematics, Faculty of Basic Sciences, Shiraz University of Technology, Shiraz, Iran
  1. A. Saadatmandi, M. Dehghan, The use of Sinc-Collocation method for solving multi-point boundary value problems, Commun Nonlinear Sci Numer Simulat , pp. 593-601, 2011.
  2. J. Lund, K.L. Bowers, Sinc methods for quadrature and differential equations, PA, Philadelphia.: SIAM; 1992.
  3. M. Dehghan, A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer Methods Partial Differential Eq 24 ,pp. 1080–1093, 2008.
  4. A. Mohebbi, M. Dehghan, High order compact solution of the one-space-dimensional linear hyperbolic equation, Numer Methods Partial Differential Eq 24, pp. 1222–1235, 2008.
  5. F. Gao, C. Chi, Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation, Appl Math Comput 187 , pp. 1272–1276, 2007.
  6. A. Saadatmandi, M. Dehghan, Numerical solution of the one-dimensional wave equation with an integral condition, Numer Methods Partial Differential Eq 23 , pp. 282–292, 2007.
  7. R. K. Mohanty, M. K. Jain, and K. George, On the use of high order difference methods for the system of one space second order non-linear hyperbolic equations with variable coefficients, J Comp Appl Math 72 , pp. 421–431, 1996.
  8. V.H. Weston, S. He, Wave splitting of the telegraph equation in R3 and its application to inverse scattering, Inverse Probl. 9, pp. 789–812, 1993.
  9. J. Banasiak, J.R. Mika, Singularly perturved telegraph equations with applications in the random walk theory, J. Appl. Math. Stoch. Anal. 11(1), pp. 9–28, 1998.
  10. R. Aloy, M. C. Casaban, L. A. Caudillo-Mata, and L. Jodar, Computing the variable coefficient telegraph equation using a discrete eigenfunctions method, Comput Math Appl 54, pp. 448–458, 2007.
  11. E. Hesameddini, H. Latifizadeh, An optimal choice of initial solutions in the homotopy perturbation method, Int. J. Nonlinear Sci. Numer. Simul. 10, pp. 1389–1398, 2009.
  12. E. Hesameddini, H. Latifizadeh, A new vision of the He’s homotopy perturbation Method, Int. J. Nonlinear Sci. Numer. Simul. 10, pp. 1415–1424, 2009.
  13. B. Raftari, A. Yildirim, Analytical solution of second- order Hyperbolic Telegraph Equation by Variation Iteration and Homotopy Perturbation Methods, Results in Mathematics, pp.1-16, 2010.
  14. M. Dosti, A. Nazemi, Solving one-dimensional hyperbolic equation using cubic B-spline quasi-interpolation,International Journal of Mathematical and Computer Sciences, pp.57-62, 2011.
  15. A. Saadatmandi, M. Dehghan, Numerical Solution of Hyperbolic Telegraph Equation Using the Chebyshev Tau Method, Numerical Methods for Partial Differential Equations, pp.239-252, 2009.
  16. R.Mokhtari, M.Mohammadi, Numerical solution of GRLW equation using Sinc-collocation method, Computer Physics Communications, pp. 1266-1274, 2010.
  17. K. Parand, A. Pirkhedri, Sinc-collocation method for solving astrophysics equations, New Astron, pp. 533–537, 2010.
  18. K. Parand, M. Dehghan, A. Pirkhedri, Sinc-collocation method for solving the Blasius equation, Phys Lett A, pp. 4060–4065, 2009.
  19. K. Parand, Z. Delafkar, N. Pakniat, A. Pirkhedri, M. Kazemnasab Haji, Collocation method using sinc and rational Legendre functions for solving Volterra’s
  20. Population model. Commun Nonlinear Sci Numer Simulat, pp. 1811–1819, 2011.
  21. A. Saadatmandi, M. Razzaghi, M. Dehghan, Sinc-collocation methods for the solution of Hallen’s integral equation, J Electromagan Waves Appl, pp. 245–256, 2005.
  22. A. Saadatmandi, M. Razzaghi, The numerical solution of third-order boundary value problems using Sinc-collocation method, Commun Numer Meth Eng, pp. 681–689, 2007.
  23. M. Dehghan, A. Saadatmandi, The numerical solution of a nonlinear system of second-order boundary value problems using the Sinc-collocation Method, Math Comput Model, pp. 1434–1441, 2007.
  24. A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, HEP and Springer, Beijing and Berlin, 2009.
  25. F. Stenger , Numerical methods based on Sinc and analytic functions. New York: Springer-Verlag, 1993.