Journal of Basic and Applied Physics                            
Journal of Basic and Applied Physics(JBAP)
ISSN:2304-9340(Print)
ISSN:2304-9332(Online)
Frequency: Annually
Website: www.academicpub.org/jbap/
The Effect of Radio Frequency Plasma Nitriding on Biocompatibility of Nickel-Titanium Shape Memory Alloys
Full Paper(PDF, 3527KB)
Abstract:
Nickel-titanium (Ni-Ti) shape memory alloys (SMAs) are attractive materials for orthopedic and dental implants, due to its two intrinsic properties including shape memory effect (SME) and superelasticity (SE), which may not be found in other commonly-used surgical metals. Possible Ni ion release, however, hampers their medical applications, particularly in orthopedic implants where fretting is always expected at the articulating surface. Inductively coupled radio frequency plasma (ICRFP) was employed to alter the surface of equiatomic Ni-Ti discs in order to create a barrier to out-diffusion of Ni ions from the bulk material. The ICRFP experiments were carried out with nitrogen, which promoted the formation of a titanium nitride layer on the surface of the Ni-Ti samples. The present paper explores the biocompatibility and performance of the ICRFP treated and untreated Ni-Ti samples. The results confirm that nitrogen plasma modified Ni-Ti alloys are potentially suitable materials for orthopedics without inducing harmful biological effects.
Keywords:Nickel-Titanium (Ni-Ti); Superelasticity (SE); Shape Memory Effect (SME); Inductively Coupled Radio Frequency Plasma (ICRFP); Biocompatibility; Corrosion Resistance
Author: Fayez Mahamoud El-Hossary1, Sayed Mohammed Khalil2, Magdy Abdel Wahab Kassem3, Medhat Abd EL Lateef1, Doha Saber Mohamed4, Khaled Lotfy1
1.Physics Department, Faculty of Science, Sohag University, Sohag, Egypt
2.Umm Al-Qura University, University Coolege, Qunfadah Center for Scientific Research (QCSR), Alqunfadah, KSA
3.Department of Materials and Metallurgical Engineering, Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez, Egypt
4.Department of Histology, Faculty of Medicine, Sohag University, Sohag, Egypt
References:
  1. M. F. Chen, X. J. Yang, R. X. Hu, Z. D. Cui, and H. C. Man, “Bioactive NiTi shape memory alloy used as bone bonding implants,” Mater. Sci. and Eng., vol. 24, pp. 497-502, 2004.
  2. J. Ryhanen, M. Kallioinen, W. Serlo, P. Peramaki, J. Junila, P. Sandvik, E. Niemela, and J. Tuukkanen, “Bone healing and mineralization, implant corrosion, and trace metals after nickel–titanium shape memory metal intramedullary fixation,” J. Biomed. Materi. Res., vol. 47, pp. 472-480, 1999.
  3. W. Jia, M. W. Beatty, R. A. Reinhardt, T. M. Petro, D. M. Cohen, C. R. Maze, E. A. Strom, and M. Hoffman, “Nickel release from orthodontic arch wires and cellular immune response to various nickel concentrations,” J. Biomed. Mater. Res., vol. 48, pp. 488-495, 1999.
  4. M. Es-Souni, M. Es-Souni, and H. F. Brandies, “On the properties of two binary NiTi shape memory alloys. Effects of surface finish on the corrosion behaviour and in vitro biocompatibility,” Biomaterials, vol. 23, pp. 2887-2894, 2002.
  5. M. Es-Souni, M. Es-Souni, and H. F. Brandies, “On the transformation behaviour, mechanical properties and biocompatibility of two NiTi-based shape memory alloys: NiTi42 and NiTi42Cu7,” Biomaterials, vol. 22, pp. 2153-2161, 2001.
  6. D. Bogdanski, M. Koller, D. Muller, G. Muhr, M. Bram, H. P. Buchkremer, D. Stover, J. Choi, and M. Epple, “Easy assessment of the biocompatibility of Ni-Ti alloys by in vitro cell culture experiments on a functionally graded Ni-NiTi-Ti material,” Biomaterials, vol. 23, pp. 4549-4555, 2002.
  7. C. C. Shih, S. J. Lin, Y. L. Chen, Y. Y. Su, S. T. Lai, G. J. Wu, C. F. Kwok, and K. H. Chung, “The cytotoxicity of corrosion products of nitinol stent wire on cultured smooth muscle cells,” J. Biomed. Mater. Res., vol. 52, pp. 395-403, 2000.
  8. L. Tan, R. A. Dodd, and W. C. Crone, “Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation,” Biomaterials, vol. 24, pp. 3931-3939, 2003.
  9. R. W. Y. Poon, K. W. K. Yeung, X. Y. Liu, P. K. Chu, C. Y. Chung, W. W. Lu, K. M. C. Cheung, and D. Chan, “Carbon plasma immersion ion implantation of nickel-titanium shape memory alloy,” Biomaterials, vol. 26, pp. 2265-2272, 2005.
  10. K. W. K. Yeung, R. W. Y. Poon, X. Y. Liu, J. P. Y. Ho, C. Y. Chung, P. K. Chu, W. W. Lu, D. Chan, and K. M. C. Cheung, “Investigation of nickel suppression and cytocompatibility of surface-treated nickel-titanium shape memory alloys by using plasma immersion ion implantation,” J. Biomed. Mater. Res. A, vol. 72, pp. 238-245, 2005.
  11. R. W. Y Poon, X. Y. Liu, C. Y. Chung, P. K. Chu, K. W. K. Yeung, W. W. Lu, and K. M. C Cheung, “Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy,” J. Vac. Sci. Technol. A, vol. 23, pp. 525-530, 2005.
  12. K. W. K. Yeung, R. W. Y. Poon, X. Y. Liu, J. P. Y. Ho, C. Y. Chung, P. K. Chu, W. W. Lu, D. Chan, and K. M. C. Cheung, “Corrosion resistance, surface mechanical properties, and cytocompatibility of plasma immersion ion implantation-treated nickel-titanium shape memory alloys,” J. Biomed. Mater. Res. A, vol. 75, pp. 256-267, 2005.
  13. F. M. El-Hossary, S. M. Khalil, M. A. W. Kassem, M. A. E. Lateef, and K. Lotfy, “Tribological Properties of Biomedical NiTi Shape Memory Alloy after Rf Plasma Nitriding,” Journal of Basic and Applied Physics, vol. 3, pp. 54-67, 2014
  14. H. C. Man, and N. Q. Zhao, “Phase transformation characteristics of laser gas nitrided NiTi shape memory alloy,” Surf. Coat. Technol., vol. 200, pp. 5598-5605, 2006.
  15. S. K. Wu, H. C. Lin, and C. Y. Lee, “Gas nitriding of an equiatomic TiNi shape-memory alloy: Part I: Nitriding parameters and microstructure characterization,” Surf. Coat. Technol., vol. 113, pp. 17-24, 1999.
  16. L. Neelakantan, S. Swaminathan, M. Spiegel, G. Eggeler, and A. Hassel, “Selective surface oxidation and nitridation of NiTi shape memory alloys by reduction annealing, corrosion science,” Corrosion Science, vol. 51, pp. 635-641, 2009.
  17. R. Mientus, and K. Ellmer, “Reactive DC magnetron sputtering of elemental targets in Ar/N2 mixtures: relation between the discharge characteristics and the heat of formation of the corresponding nitrides,” Surf. Coat. Technol., vol. 1093, pp. 116-119, 1999.
  18. K. Yokota, K. Nakamura, T. Kasuya, S. Tamura, T. Sugimoto, K. Akamatsu, K. Nakao, and F. Miyashita, “Compositional structure of dual TiNO layers deposited on SUS 304 by an IBAD technique,” Surf. Coat. Technol., vol. 568, pp. 158-159, 2002.
  19. J. Lelatkoa, T. Goryczka, T. Wierzchon, M. Ossowski, B. Losiewicz, E. Rowinski, and H. Morawiec, “Surface modification of Ni-Ti alloy by low-temperature nitriding Process,” pp. 1-6, 2009, DOI:10.1051/esomat/20090502.
  20. D. Cocke, M. Rajmanand, and S. Vepreck, “The surface properties and reactivities of plasma nitrided iron and their relation to corrosion passivation electrochemical science and technology,” J. Electrochem. Soc., vol. 136, p. 3655, 1989.
  21. A. Akolzin, Y. Kharitonov, and S. Kovalenko, “In Enhanced corrosion resistance properties of radiofrequency cold plasma nitride carbon steel,” Werkst. Korros., vol. 38, p. 417, 1987.
  22. I. Gurappa, “Characterization of different materials for corrosion resistance under simulated body fluid conditions,” Mater. Characterization, vol. 49, pp. 73-79, 2002.
  23. M. M. Hukovic, A. Kwokal, and J. Piljac, “The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution,” Biomaterials, vol. 24, pp. 3765-3775, 2003.
  24. G. Rondelli, B. Vicentini, and A. Cigada, “The corrosion behaviour of nickel titanium shape memory alloys,” Corrosion Science, vol. 30, pp. 805-812, 1990.
  25. M. Niinomi, “Recent research and development in titanium alloys for biomedical applications and healthcare goods,” Science and Technology of Advanced Materials, vol. 4, pp. 445-454, 2003.
  26. S. Piscanec, L. C. Ciacchi, E. Vesselli, G. Comelli, O. Sbaizero, S. Meriani, and A. De Vita, “Bioactivity of TiN-coated titanium implants,” Acta Material, vol. 52, pp. 1237-1245, 2004.
  27. K. Matsumoto, N. Tajima, and S. Kuwahara, “Correction of scoliosis with shape-memory alloy,” Nihon Seikeigeka Gakkai Zasshi, vol. 67, pp. 267-274, 1993.
  28. J. Ryhanen, “Biocompatibility evaluation of nickel-titanium shape memory metal alloy,” Dissertation, University of Oulu, 1999.
  29. P. Ypsilantis, M. Politou, D. Mikroulis, M. Pitiakoudis, M. Lambropoulou, C. Tsigalou, V. Didilis, G. Bougioukas, N. Papadopoulos, C. Manolas, and C. Simopoulos, “Organ Toxicity and Mortality in Propofol-Sedated Rabbits Under Prolonged Mechanical Ventilation,” International Anesthesia Research Society, vol. 105, pp. 155-166, 2007.