Journal of Basic and Applied Physics                            
Journal of Basic and Applied Physics(JBAP)
Frequency: Annually
Effect of Wavelength on the Photocurrent and Photovoltage of Vertical Parallel Silicon Solar Cells under Steady State Condition
Full Paper(PDF, 345KB)
The effect of wavelength on the photocurrent and photovoltage of a vertical parallel junction solar cell under steady state condition was theoretically analyzed. Based on the diffusion equation, the excess minority carrier’s density is expressed; both photocurrent density and photovoltage determine the junction recombination velocity and the wavelengths. The excess minority carrier density, the photocurrent density, and the photovoltage were calculated and plotted. The objective of this work is to show the effects of solar cell junction recombination velocity and the wavelengths on these electrical parameters. We have shown the effect of wavelength on initiating the short-circuit (Sfsc) and limited the open circuit (Sfoc) of the solar cell through the junction recombination velocity. The determination of Sfoc obtained from the curve of photovoltage versus Sf, and the determination of Sfsc is through from the curve of the photocurrent density according to Sf.
Keywords:Vertical Parallel Solar Cell; Recombination Velocity; Photocurrent; Photovoltage
Author: Gökhan Sahin1
1.Electric and Electronic Engineering Department, I?DIR University, I?d?r 76000, Turkey
  1. G. Sahin, “Effect of wavelength on the electrical parameters of a vertical parallel junction silicon solar cell illuminated by its rear side in frequency domain,” Results in Physics, vol. 6, pp. 107-111, March 2016.
  2. J.W. Orton and P. Blood, The Electrical Charactization of Semiconductor: Measurement of Minority Carrier Properties, 13th ed., Academic Press, London, pp. 279-286, November 1990.
  3. D.M. Chapin, C.S. Fuller, and G.L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys., vol. 25, pp. 676-677, May 1954.
  4. M.B. Prince, “Silicon solar energy converters,” J. Appl. Phys., vol. 26, pp. 534-540, May 1955.
  5. W. Shockley and H.J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cell,” J. Appl. Phys., vol. 32, pp. 510-519, 1961.
  6. M. Wolf, “A new look at silicon solar cell performance,” Energy Conversion, vol. 11, pp. 63-73, 1971.
  7. A.W. Blakers and M.A. Green, “20% efficiency silicon solar cells,” Appl. Phys. Lett., vol. 48, pp. 215-217, January 1986.
  8. W. Wang, J. Zhao, and M.A. Green, “24% efficiency silicon solar cells,” Appl. Phys. Lett., vol. 57, pp. 602-604, August 1990.
  9. M. M. Dione, S. Mbodji, M. L. Samb, M. Dieng, M. Thiame, S. Ndoye, F. I. Barro, and G. Sissoko, “Junction Under Constant Multispectral Light: Determination Of Recombination Parameters,” 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, pp. 465-468, 21-25 September 2009.
  10. G. Sahin, M. Dieng, M. A. O. E. Moujtaba, M. I. Ngom, A. Thiam, and G. Sissoko, “Capacitance of Vertical Parallel Junction Silicon Solar Cell under Monochromatic Modulated Illumination,” Journal of Applied Mathematics and Physics, vol. 3, pp. 1536-1543, 2015.
  11. N. Honma and C. Munakata, “Sample Thickness Dependence of Minority Carrier Lifetimes Measured Using an ac Photovoltaic Method,” Japanese Journal of Applied Physics, vol. 26, no. 12, pp. 233-236, December 1987.
  12. N. Honma, C. Munakata, and H. Shimizu, “Calibration of Minority Carrier Lifetimes Measured with an ac Photovoltaic Method,” Japanese Journal of Applied Physics, vol. 27, no. 7, pp. 1322-1326, July 1988.
  13. A. Mandelis, “Coupled ac photocurrent and photothermal reflectance response theory of semiconducting p-n junctions,” J. Appl. Phys., vol. 66, iss. 11, pp. 5572-5583, December 1989.
  14. M. Sane, G. Sahin, F. I. Barro, and A. S. Maiga, “Incidence angle and spectral effects on vertical junction silicon solar cell capacitance,” Turk. J. Phys., vol. 38, pp. 221-227, June 2014.
  15. H. L. Diallo, A. Wereme, A. S. Maiga, and G. Sissoko, “New approach of both junction and back surface recombination velocities in a 3D modelling study of a polycrystalline silicon solar cell,” Eur. Phys. J. Appl. Phys., vol. 42, pp. 203-11, June 2008.
  16. A. Gover and P. Stella, “Vertical Multijunction Solar-Cell One-Dimensional Analysis,” IEEE Transactions on Electron Devices, vol. 21, iss. 6, pp. 351-356, June 1974.
  17. R. Topkaya, H. Güngüneş, Ş. Eryiğit, Sagar E. Shirsath, A. Yıldız, and A. Baykal, “Effect of bimetallic (Ni and Co) substitution on magnetic properties of MnFe2O4 nanoparticles,” Ceramics International, vol. 42, iss. 12, pp. 13773-13782, September 2016.
  18. G. Sahin, “Determination des paramètres électriques d’une photopile a jonction verticale parallèle sous éclairement monochromatique en modulation de fréquence à partir de la caractéristique I-V,” Thèse de Doctorat Unique en Physique et Applications, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Sénégal, October 2014.
  19. E. H. Ndiaye, G. Sahin, M. Dieng, A. Thiam, H. L. Diallo, M. Ndiaye, and G. Sissoko, “Study of the Intrinsic Recombination Velocity at the Junction of Silicon Solar under Frequency Modulation and Irradiation,” Journal of Applied Mathematics and Physics, vol. 3, pp. 1522-1535, November 2015.
  20. M. Sane, Z. Martial, H. L. Diallo, G. Sahin, N. Thiam, M. Diaye, M. Dieng, and G. Sissoko, “Influence of Incidence Angle on the Electrical Parameters of a vertical Silicon Solar Cell under Frequency Modulation,” International Journal of Inventive Engineering and Sciences (IJIES), vol. 1, iss. 11, pp. 37-40, October 2013.
  21. M. I. Ngom, B. Zouma, M. Zoungrana, M. Thiame, Z. N. Bako, A.G. Camara, and G. Sissoko, “Theorical Study of a Parallel Vertical Multi Junction Silicon cell under Multispectral İllumination: Influence of External Magnetic Field on the Electrical Parameters,” International Journal of Advanced Technology & Engineering Research (IJATER), vol. 2, iss. 6, pp. 101-109, November 2012.
  22. H. Mathieu et H. Fanet, “Physique des semiconducteurs et des composants électroniques,” 6th ed., pp. 832, Dunod, 2009.
  23. M. Ndiaye, “Etude en regime dynamique frequenciel d`une photopile bifaciale sous éclairement monochromatique détermination des paramètres électriques,” Thèse de Doctorat 3ème cycle, Université Cheikh Anta Diop de Dakar, Sénégal, 2010.
  24. M. Santo, S. Abdelillah, K. Jean-Pa, L. Mustapha, T. Christian, L. C. Claude, D. Sebastien, M. Remi, V. Yves, P. Isabelle, L. Q. Nam, and K. Jed, “Silicon Solar Cell, Crystalline,” Robert A. Meyers, Ed., Encyclopedia of sustainability Science and Technology, Springer Science+Business Media, LLC, Springer New York, pp. 9196-9240, 2012.
  25. M. Erdem and C. Boyraz, “Magnetic effect on the phase properties of Neodymium activated Yttriumdisilicates nanomaterials,” Turk. J. Phys., DOI: 10.3906/fiz-1602-8, 2016 (in press).
  26. T. Guven, K. Adem, and S. Erdal, “Influences of Pr and Ta doping concentration on the characteristic features of FTO thin film deposited by spray pyrolysis,” Chinese Physics B, vol. 24, iss. 10, pp. 414-422, October 2015.
  27. J.E. Mahan and D.L. Barnes, “Depletion layer effects in the open-circuit- voltage-decay lifetime measurement,” Solid-State Electronics, vol. 24, iss. 10, pp. 989-994, October1981.
  28. T. Flohr and R. Helbig, “Determination of minority-carrier lifetime and surface recombination velocity by Optical-Beam-Induced-Current measurements at different light wavelengths,” J. Appl. Phys., vol. 66, iss. 7, pp. 3060-3065, 1989.
  29. Z. Li, H. Qing, J. Wei-Long, L. Chang-Jian, and S. Yun, “Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical properties versus Composition,” Chin. Phys. Lett., vol. 26, no. 2, pp. 1-4, February 2009.