Journal of Civil Engineering and Science                 
Journal of Civil Engineering and Science(JCES)
ISSN:2227-4634 (Print)
ISSN:2227-4626(Online)
Website: www.academicpub.org/jces/
Dynamic Characteristics and Rocking Response of a Byzantine Medieval Tower
Full Paper(PDF, 1477KB)
Abstract:
This investigation deals with the dynamic response of a Byzantine unreinforced masonry tower. The tower is located on Mount Athos and was erected in 1427. It was built to host the bells of Vatopedion Monastery and is 25 m tall. It has suffered several earthquakes during its history, and some restoration interventions have been applied. Firstly, the architectural characteristics are considered in the light of seismic events that hit the monument. Then, the modal characteristics are investigated using a linear analysis. Finally, the limit analysis is adopted to examine the behaviour of the tower up to collapse due to out-of-plane failure. A force-based and a displacement-based method are applied, and the respective capacities are converted into spectral quantities using properties of the first mode. Possible collapse mechanisms are considered in conjunction with the observed after-shock damage. The safety factor is derived comparing the capacity curves with the considered spectra.
Keywords:Byzantine Tower; Modal Analysis; Out-of-Plane Collapse; Limit Analysis; Capacity Curves
Author: Emmanouil-Georgios Kouris1
1.Department of Civil Engineering, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
References:
  1. T. M. Ferreira, A. A. Costa, and A. Costa, “Analysis of the out-of-plane seismic behavior of unreinforced masonry: A Literature Review,” International Journal of Architectural Heritage, vol. 9, no. 8, pp. 949-972, 2014.
  2. L. Landi, R. Gabellieri, and P. P. Diotallevi, “A model for the out-of-plane dynamic analysis of unreinforced masonry walls in buildings with flexible diaphragms,” Soil Dyn. Earthq. Eng., vol. 79, pp. 211-222, Dec. 2015.
  3. D. P. Abrams, “Response of unreinforced masonry buildings,” J. Earthq. Eng., vol. 1, no. 1, pp. 257-273, Jan. 1997.
  4. F. Portioli, C. Casapulla, L. Cascini, M. D’Aniello, and R. Landolfo, “Limit analysis by linear programming of 3D masonry structures with associative friction laws and torsion interaction effects,” Arch. Appl. Mech., vol. 83, no. 10, pp. 1415-1438, 2013.
  5. M. J. Kowalsky, M. J. N. Priestley, and G. A. MacRae, “Displacement-based design of RC bridge columns in seismic regions,” Earthq. Eng. Struct. Dyn., vol. 24, no. 12, pp. 1623-1643, 1995.
  6. J. P. Moehle, “Displacement-based design of RC structures subjected to earthquakes,” Earthq. Spectra, vol. 8, no. 3, pp. 403-428, 1992.
  7. M. J. N. Priestley, G. M. Calvi, and M. J. Kowalsky, Displacement-based Seismic Design of Structures, vol. 17, IUSS Press, Pavia, Italy, 2007.
  8. S. Lagomarsino, “Seismic assessment of rocking masonry structures,” Bull. Earthq. Eng., vol. 13, no. 1, pp. 97-128, 2014.
  9. G. Milani, P. Lourenço, and A. Tralli, “Homogenization approach for the limit analysis of out-of-plane loaded masonry walls,” J. Struct. Eng., vol. 132, no. 10, pp. 1650-1663, 2006.
  10. A. Giordano, A. De Luca, E. Mele, and A. Romano, “A simple formula for predicting the horizontal capacity of masonry portal frames,” Eng. Struct., vol. 29, no. 9, pp. 2109-2123, 2007.
  11. N. T. K. Lam, M. Griffith, J. Wilson, and K. Doherty, “Time-history analysis of URM walls in out-of-plane flexure,” Eng. Struct., vol. 25, no. 6, pp. 743-754, 2003.
  12. M. Indirli, L. A. S. Kouris, A. Formisano, R. P. Borg, and F. M. Mazzolani, “Seismic damage assessment of unreinforced masonry structures after the Abruzzo 2009 earthquake: The case study of the historical centers of L’Aquila and Castelvecchio Subequo,” Int. J. Archit. Herit., vol. 7, no. 5, pp. 536-578, 2013.
  13. D. Theodossopoulos and B. Sinha, “A review of analytical methods in the current design processes and assessment of performance of masonry structures,” Constr. Build. Mater., vol. 41, no. 2, pp. 990-1001, 2013.
  14. H. Alexakis and N. Makris, “Limit equilibrium analysis and the minimum thickness of circular masonry arches to withstand lateral inertial loading,” Arch. Appl. Mech., vol. 84, no. 5, pp. 757-772, 2014.
  15. P. Roca, F. López-Almansa, J. Miquel, and A. Hanganu, “Limit analysis of reinforced masonry vaults,” Eng. Struct., vol. 29, no. 3, pp. 431-439, 2007.
  16. G. De Felice, “Out-of-plane seismic capacity of masonry depending on wall section morphology,” Int. J. Archit. Herit., vol. 5, no. 4-5, pp. 466-482, 2011.
  17. J. Heyman, “The stone skeleton,” Int. J. Solids Struct., vol. 2, no. 2, pp. 249-256-NaN-264-NaN-279, 1966.
  18. G. W. Housner, “The behavior of inverted pendulum structures during earthquakes,” Bull. Seismol. Soc. Am., vol. 53, no. 2, pp. 403-417, 1963.
  19. E. G. Dimitrakopoulos and M. J. DeJong, “Revisiting the rocking block: closed-form solutions and similarity laws,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 468, no. 2144, pp. 2294-2318, Apr. 2012.
  20. K. Doherty, M. C. Griffith, N. Lam, and J. Wilson, “Displacement-based seismic analysis for out-of-plane bending of unreinforced masonry walls,” Earthq. Eng. Struct. Dyn., vol. 31, no. 4, pp. 833-850, 2002.
  21. B. Papazachos and C. Papazachou, The Earthquakes of Greece, Ziti Editions publications, Thessaloniki, Greece, 304 pp., 1997.
  22. F. V Karantoni and M. N. Fardis, “Effectiveness of seismic strengthening techniques for masonry buildings,” J. Struct. Eng., vol. 118, no. 7, pp. 1884-1902, 1992.
  23. L. Binda, J. Pina-Henriques, A. Anzani, A. Fontana, and P. B. Lourenço, “A contribution for the understanding of load-transfer mechanisms in multi-leaf masonry walls: testing and modelling,” Eng. Struct., vol. 28, no. 8, pp. 1132-1148, 2006.
  24. A. Doğangün, H. Sezen, Ö. İskender Tuluk, R. Livaoğlu, and R. Acar, “Traditional Turkish masonry monumental structures and their earthquake response,” Int. J. Archit. Herit., vol. 1, no. 3, pp. 251-271, 2007.
  25. A. Bayraktar, N. CoŞkun, and A. Yalçin, “Damages of masonry buildings during the July 2, 2004 Doǧubayazit (Aǧri) earthquake in Turkey,” Eng. Fail. Anal., vol. 14, no. 1, pp. 147-157, 2007.
  26. D. Benedetti, P. Carydis, and M. P. Limongelli, “Evaluation of the seismic response of masonry buildings based on energy functions,” Earthq. Eng. Struct. Dyn., vol. 30, no. 7, pp. 1061-1081, 2001.
  27. E. Vintzileou and A. Miltiadou-Fezans, “Mechanical properties of three-leaf stone masonry grouted with ternary or hydraulic lime-based grouts,” Eng. Struct., vol. 30, no. 8, pp. 2265-2276, 2008.
  28. T. F. Paret, S. A. Freeman, G. R. Searer, M. Hachem, and U. M. Gilmartin, “Using traditional and innovative approaches in the seismic evaluation and strengthening of a historic unreinforced masonry synagogue,” Eng. Struct., vol. 30, no. 8, pp. 2114-2126, 2008.
  29. A. Penna, “Seismic assessment of existing and strengthened stone-masonry buildings: critical issues and possible strategies,” Bull. Earthq. Eng., vol. 13, no. 4, pp. 1051-1071, Aug. 2014.
  30. P. B. Lourenço and L. F. Ramos, “Characterization of cyclic behavior of dry masonry joints,” J Struct Eng, vol. 130, no. 5, pp. 779-786, 2004.
  31. A. A. Costa, A. Arêde, A. Costa, J. Guedes, and B. Silva, “Experimental testing, numerical modelling and seismic strengthening of traditional stone masonry: comprehensive study of a real Azorian pier,” Bull. Earthq. Eng., pp. 1-25, 2010.
  32. B. Villemus, J. C. Morel, and C. Boutin, “Experimental assessment of dry stone retaining wall stability on a rigid foundation,” Eng. Struct., vol. 29, no. 9, pp. 2124-2132, 2007.
  33. C. Calderini, S. Cattari, and S. Lagomarsino, “In-plane strength of unreinforced masonry piers,” Earthq. Eng. Struct. Dyn., vol. 38, no. 2, pp. 243-267, 2009.
  34. S. S. Kouris, “Applied earthquake engineering in the research of vulnerable masonry structures,” J. Civ. Eng. Sci., vol. 1, no. 4, pp. 39-46, 2012.
  35. S. S. Kouris and M. K. K. Weber, “Numerical analysis of masonry bell-towers under dynamic loading,” J. Civ. Eng. Archit., vol. 5, no. 8, pp. 715-722, 2011.
  36. A. A. Hamid and R. G. Drysdale, “Proposed failure criteria for concrete block masonry under biaxial stresses,” ASCE J Struct Div, vol. 107, no. 8, pp. 1675-1687, 1981.
  37. R. G. Drysdale, A. A. Hamid, and L. R. Baker, Masonry Structures: Behavior and Design, Prentice Hall, 1994.
  38. A. W. Page, “Biaxial compressive strength of brick masonry,” Proc. Inst. Civ. Eng. (London). Part 1 - Des. Constr., vol. 71, no. pt 2, pp. 893-906, 1981.
  39. M. Dhanasekar, A. W. Page, and P. W. Kleeman, “Failure of brick masonry under biaxial stresses,” Proc. Inst. Civ. Eng., vol. 79, no. pt 2, pp. 295-313, 1985.
  40. K. Naraine and S. Sinha, “Stress-strain curves for brick masonry in biaxial compression,” J. Struct. Eng., vol. 118, no. 6, pp. 1451-1461, 1992.
  41. M. Dhanasekar, P. W. Kleeman, and A. W. Page, “Biaxial stress-strain relations for brick masonry,” J. Struct. Eng., vol. 111, no. 5, pp. 1085-1100, 1985.
  42. K. Naraine and S. Sinha, “Cyclic behavior of brick masonry under biaxial compression,” J. Struct. Eng., vol. 117, no. 5, pp. 1336-1355, 1991.
  43. H. R. Ganz and B. Thürlimann, “Tests on the biaxial strength of masonry,” Tech. Rep. No.7502, vol. 3, 1982.
  44. A. Bernardini, C. Modena, and U. Vescovi, “An anisotropic biaxial failure criterion for hollow clay brick masonry,” Int. J. Masonry Constr., vol. 2, no. 4, p. 165, 1982.
  45. V. Kárník, D. Procházková, Z. Schenková, L. Ruprechtová, A. Dudek, J. Drimmel, E. Schmedes, G. Leydecker, J. P. Rothé, B. Guterch, H. Lewandowska, D. Mayer-Rosa, D. Cvijanović, V. Kuk, F. Giorgetti, G. Grünthal, and E. Hurtig, “Map of isoseismals of the main Friuli earthquake of 6 May 1976,” Pure Appl. Geophys., vol. 6, pp. 1307-1313, 1978.
  46. A. Formisano, M. R. Grippa, P. Di Feo, and G. Florio, “L’Aquila earthquake: a survey in the historical centre of Castelvecchio Subequo,” in Proc. of the COST Action C26 Final Conference “Urban Habitat Constructions under Catastrophic Events”, 2010, vol. 1, pp. 371-376.
  47. D. Bindi, F. Pacor, L. Luzi, M. Massa, and G. Ameri, “The Mw 6.3, 2009 L’Aquila earthquake: Source, path and site effects from spectral analysis of strong motion data,” Geophys. J. Int., vol. 179, no. 3, pp. 1573-1579, 2009.
  48. L. D. Decanini, A. De Sortis, A. Goretti, L. Liberatore, F. Mollaioli, and P. Bazzurro, “Performance of masonry buildings during the 2002 Molise, Italy, earthquake,” Earthq. Spectra, vol. 20, no. S1, pp. S191-S220, 2004.
  49. D. P. Abrams, R. Angel, and J. Uzarski, “Out-of-plane strength of unreinforced masonry infill panels,” Earthq. Spectra, vol. 12, no. 4, pp. 825-844, 1996.
  50. R. D. Ewing and J. C. Kariotis, “Methodology for mitigation of seismic hazards in existing unreinforced masonry buildings: Wall testing, out-of-plane,” Methodology for Mitigation of Seismic Hazards in Existing Unreinforced Masonry Buildings: Diaphragm Testing, ABK, El Segundo, CA, Technical report 04, 1981.
  51. CEN, “Eurocode 8, design of structures for earthquake resistance. Part 1: general rules, seismic actions and rules for buildings,” Eur. Stand. NF EN, vol. 1, 1998.
  52. M. C. Griffith, G. Magenes, G. Melis, and L. Picchi, “Evaluation of out-of-plane stability of unreinforced masonry walls subjected to seismic excitation,” Journal of Earthquake Engineering, vol. 7(sup1), pp. 141-169, 2003.
  53. S. Lagomarsino, “On the vulnerability assessment of monumental buildings,” Bull. Earthq. Eng., vol. 4, no. 4, pp. 445-463, 2006.
  54. P. Fajfar, “Capacity spectrum method based on inelastic demand spectra,” Earthq. Eng. Struct. Dyn., vol. 28, no. 9, pp. 979-994, 1999.
  55. P. Fajfar, “A nonlinear analysis method for performance-based seismic design,” Earthq. Spectra, vol. 16, no. 3, pp. 573-592, 2000.
  56. F. Peña, P. B. Lourenço, N. Mendes, and D. V Oliveira, “Numerical models for the seismic assessment of an old masonry tower,” Eng. Struct., vol. 32, no. 5, pp. 1466-1478, 2010.
  57. A. Preciado, S. T. Sperbeck, and A. Ramírez-Gaytán, “Seismic vulnerability enhancement of medieval and masonry bell towers externally prestressed with unbonded smart tendons,” Eng. Struct., vol. 122, pp. 50-61, 2016.