Journal of Materials and Chemical Engineering          
Journal of Materials and Chemical Engineering(JMCE)
ISSN:2310-063X(Print)
ISSN:2310-0621(Online)
Frequency: Quarterly
Website: www.academicpub.org/JMCE/
An Overview of the Progress in Solidification of Binary Monotectics
Full Paper(PDF, 644KB)
Abstract:
The solidification mechanism of a monotectic alloy is quite complicated due to wide freezing range of temperature and large density difference of the two liquid phases involved. However, the diffusion model by Jackson and Hunt and the wetting model by Cahn, have been successfully applied to various metallic and organic systems to explain the solidification behavior of different monotectics. Using these models, in the present paper, a current status of solidification of binary monotectics of metal as well as that of organic origins has been described and various methods to overcome the problems associated with this have been highlighted. Due to low transformation temperature, ease of purification, transparency, minimized convection effects and wider choice of materials, organic systems are better than those of metallic systems for detailed investigation of the parameters which control the mechanism of solidification, which in turn, controls the properties of materials. Organic monotectic systems, suitable for experiments under reduced gravity condition, are potentially useful to explore new manufacturing techniques to get novel materials to cater the needs of modern civilization.
Keywords:Monotectic Crystallization; Binary Monotectics; Binary Organic Solidification; Mechanism of Solidification
Author: U S Rai1, Manjeet Singh1
1.Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi- 221005, India
References:
  1. R. Elliott, “Eutectic Solidification Processing” Butterworths, London (1983).
  2. M. Herlach, R. F. Cochrane, I. Egry, H. J. Fecht and A. L. Greer, Int. Mater. Rev., 38 (1993) 273.
  3. F. Kaukler, F. Rosenberger and P. A. Curreri, Metall. Mater. Trans., 28A, (1997) 1705.
  4. B. Majumdar and K. Chattopadhyay, Metall. Mater. Trans., 31A (2000) 1.
  5. J. Glazer, Intl. Mater. Rev., 40 (1995) 65.
  6. J. Sangster, J. Phys. Chem. Ref. Data, 23 (1994) 295.
  7. D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys”, Van Nostrand Reinhold Vokingham (U. K.) Co. Ltd. (1982).
  8. V. V. Podolinsky, Y. N. Taran and V. G. Drykin, J. Cryst. Growth, 96 (1989) 291.
  9. W. Kurz and R. Trivedi, “Proc. of Third Intl. Conf. On Solidification Processing”, Sheffield (1987) 1.
  10. R. Caram, M. Banan and W. R. Wilcox, J. Cryst. Growth, 114 (1991) 249.
  11. W. F. Kaukler, D. O. Frazier, J. Cryst. Growth, 71 (1985) 340.
  12. R.N. Rai and R.S.B. Reddi, Thermochim. Acta, 496 (2009) 13.
  13. R.S.B. Reddi, Shiva Kant, U.S. Rai and R.N. Rai, J. Cryst. Growth, 312 (2009) 95.
  14. K.P. Sharma, R.S.B. Reddi, Shiva Kant and R.N. Rai, Thermochim. Acta, 498 (2010) 112.
  15. Shiva Kant, R.S.B. Reddi and R.N. Rai Fluid Phase Equilibria, 291 (2010) 71.
  16. K. P. Sharma and R. N. Rai, J. Mater Sci., 46 (2011) 1551.
  17. Manjeet Singh, Rama Nand Rai and U. S. Rai, A. J. Analy. Chemistry, 2 (2011) 953.
  18. Shiva Kant and R.N. Rai Thermochim. Acta, 512 (2011) 49.
  19. K. P. Sharma, R. S. B. Reddi and R. N. Rai, J Therm Anal Calorim, 110 (2012) 545.
  20. R. S. B. Reddi, V. S. A. Kumar Satuluri, U. S. Rai and R. N. Rai, J Therm Anal Calorim, 107 (2012) 377.
  21. R.S.B. Reddi, S. Ganesamoorthy, P.K. Gupta and R.N. Rai, Fluid Phase Equilibria, 313 (2012) 121.
  22. K.P. Sharma, R.N. Rai, Thermochim. Acta, 535 (2012) 66.
  23. B. Predel. J. Phase Equilib., 18 (1997) 327.
  24. H. Song and A. Hellawell, Metall. Trans., 20A (1989) 171.
  25. B. Mazumdar and K. Chattopadhyay, Metall. Mater. Trans., 27A (1996) 2053.
  26. S. Chaubey, K. S. Dubey and P. R. Rao, J. Alloy Phase diagram, 6 (1990) 153.
  27. P. Matisak, A. X. Jhao, R. Narayanan and A. L. Fripp, J. Cryst. Growth, 174 (1997) 90.
  28. M. E. Glicksman, N. B. Singh and M. Chopra, Manuf. Space, 11 (1983) 207.
  29. J. E. Smith and D. O. Frazier and W. F. Kaukler, Scripta Metallurgica, 18 (1984) 677.
  30. R. N. Grugel and A. Hellawell, Metall. Trans., 13A (1982) 493.
  31. N. B. Singh, U. S. Rai and O. P. Singh, J. Cryst. Growth, 71 (1985) 353.
  32. J. C. Gachon, J. Phys. Chem. Solids, 49 (1988) 435.
  33. U. S. Rai and H. Shekhar., Thermochim. Acta, 186 (1991) 131.
  34. U. S. Rai and R. N. Rai, J. Cryst. Growth, 169 (1996) 563.
  35. U. S. Rai and R. N. Rai, J. Cryst. Growth, 191 (1998) 234.
  36. U. S. Rai and R. N. Rai, J. Mater. Res., 14 (1999) 1299.
  37. U. S. Rai and R. N. Rai, Chem. Mater. Am. Chem. Soc., 11 (1999) 3031.
  38. U. S. Rai and P. Pandey, Materials Letters, 39 (1999) 166.
  39. U. S. Rai and P. Pandey, Mol. Mater., 12 (2000) 13.
  40. U. S. Rai and P. Pandey, J. Therm. Anal. Cal., 67 (2002) 535.
  41. U. S. Rai and P. Pandey, Thermochim. Acta, 364 (2000) 111.
  42. U. S. Rai, R. N. Rai and P. Pandey, J. Cryst. Growth, 220 (2000) 610.
  43. U. S. Rai and P. Pandey, J. Cryst. Growth, 249 (2003) 301.
  44. H. Erturan and S. M. S. Savas Altintas, Metall. Mater. Trans., 28A (1997) 1509.
  45. K. A. Jackson and J. D. Hunt, Acta Metallurgica, 13 (1965) 1212.
  46. M.N. Crooker, M.N. Parlan, D. Bargav and R.W. Smith, J. Cryst. Growth, 29 (1975) 85.
  47. M.N. Crooker, D. Bargav and R.W. Smith, J. Cryst. Growth, 30 (1975) 98.
  48. K. A. Jackson and J. D. Hunt, Trans AIME, 236 (1986) 843.
  49. N. B. Singh, Science Reporter, 24 (1987) 212.
  50. G. A. Chadwick, Br. J. Appl. Phys., 16 (1965) 1095.
  51. A. Chadwick, “Metallography of Phase Transformation”, Butterworths, London (1972).
  52. J. W. Cahn, Metall. Trans., 10A (1979) 119.
  53. J. W. Cahn, J. Chem. Phys., 66 (1977) 3667.
  54. C. Schafer, M. H. Johnston and R. A. Parr, Acta Metall., 31 (1983) 1221.
  55. R. N. Grugel and A. Hellawell, Metall. Trans., 12A (1981) 669.
  56. B. Derby and J. J. Favier, Acta Metall., 31 (1983) 1123.
  57. R. N. Grugel, T. A. Lograsso and A. Hellawell, Metall. Trans., 15A (1984) 1003.
  58. R. N. Grugel and A. Hellawell, Metall. Trans., 15A (1984) 1626.
  59. W. F. Kaukler and D. O. Frazier, Nature, 323 (1986) 50.
  60. G. F. V. Voort, Material Characterization, 41 (1998) 69.
  61. B. Rudrakshi, J. P. Pathak and S. N. Ojha, Indian Foundry Journal, 48 (2002) 17.
  62. G. B. Rudrakshi, V. C. Srivastava, J. P. Pathak and S. N. Ojha, Proc. Vth Int. Conf. on Spray Forming (ICSF) Bremen (Germany), 2 (2003) 329.
  63. S. Curiotto, R. Greco, N.H. Pryds, E. Johnson and L. Battezzati, Fluid Phase Equilibria, 256 (2007) 132.
  64. A. P. Silva, A. Garciaa and J. E. Spinelli, J. Alloys and Compounds, 509 (2011) 10098.
  65. A. P. Silva, P. R. Goulart, A. Garciaa and J. E. Spinelli, Philosophical Magazine Letters, 92 (2012) 442.
  66. J.D. Hunt and S.-Z. Lu, Metallurgical and Materials Transactions A, 27A (1996) 611.
  67. W. J. Boettinger, S. R. Coriell, A.L. Greer, A. Kerma, W. Kurz, M. Rappaz and R. Trivedi, Acta Mater., 48 (2000) 43.
  68. J. Chen, P.K. Sung, S.N. Tewari, D.R. Poirier and H.C. de Groh III, Materials Science and Engineering, 357A (2003) 397.
  69. S. A. Norrisa, S. H. Davisa, S. J. Watsona and P. W. Voorhees, J. Cryst. Growth, 310 (2008) 414.
  70. J. R. Van Hoose, R. N. Grugel, S. N. Tewari, L.N. Brush, R.G. Erdmann and D.R. Poirier, Metallurgical and Materials Transactions A, DOI: 10.1007/s11661-012-1260-z.
  71. F. Chen and G. Shu, J. Mater. Sci. Letters, 17 (1998) 259.
  72. J. J. Favier, J. P. Garandet, A. Rouzaud and D. Camel, J. Cryst. Growth, 140 (1994) 237.
  73. J. J. Favier, P. Lehmann, J. P. Garandet, B. Drevet and F. Herbillon, Acta Materialia, 44 (1996) 4899.
  74. J. Iwan D. Alexander, J. P. Garandet, J. J. Favier and Arnaud Lizee, J. Cryst. Growth, 178 (1997) 657.
  75. J. E. Simption, Henry C. de Groh-III and Suresh V. Garimella, NASA/TM-1999-209381.